nating properties of SeCl_{4} (Groeneveld, 1953). The observed $\mathrm{Al}-\mathrm{Cl}$ distances (average $2.13 \AA$) in this structure agree very well with those ($\sim 2 \cdot 14 \AA$) found in AlCl_{4}^{-}ions in the compound $\mathrm{Mg}\left(\mathrm{CH}_{3} \mathrm{CN}_{6}\left(\mathrm{AlCl}_{4}\right)_{2}\right.$ (Stork-Blaisse \& Romers, 1971). Al is coordinated octahedrally in AlCl_{3} and accordingly the $\mathrm{Al-Cl}$ distances are larger ($\sim 2.31 \AA$) (Ketelaar et al. 1947).

All calculations were performed on the IBM 360/50 computer with programs developed by Mrs E. W. M. Rutten (Fourier and least-squares) and by Mr R. A. G. de Graaff (geometry). The authors thank Dr Groeneveld for his supply of crystals. They are indebted to Mr R. Ch. D. E. Hasekamp and Mr J. C. Portheine for the production of the diffraction photographs.

References

Brockway, L. O. \& Davidson, N. R. (1941). J. Amer. Chem. Soc. 63, 3287.
Buerger, M. J. (1959). Vector Space. New York:John Wiley. Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Groeneveld, W. L. (1953). Symposium on Coordination Chemistry, Copenhagen.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
International Tables for X-ray Crystallography (1952). Vol. I. p. 530. Birmingham: Kynoch Press.

Kennard, O., Speakman, J. C. \& Donnay, J. D. H. (1967). Acta Cryst. 22, 445.

Fig. 3. Idealized deformed octahedron with $C_{3 v}$ symmetry. The distances shown (\AA) are mean values of the two octahedra.

Ketelaar, J. A. A., MacGillavry, C. H. \& Renes, P. A. (1947). Rec. Trav. Chim. Pays-Bas, 66, 501.

Lenher, V. \& Kao, C. H. (1926). J. Amer. Chem. Soc. 48, 1550.

Palmer, K. J. \& Elliot, N. (1938). J. Amer. Chem. Soc. 60, 1852.
Renes, P. A. \& MacGillayry, C. H. (1945). Rec. Trav. Chim. Pays-Bas, 64, 275.
Srinivasan, R. (1961). Acta Cryst. 14, 1163.
Stork-Blaisse, B. A. \& Romers, C. (1971). To be published.
Weber, R. (1858). Pogg. Ann. 104 (180), 421.

Acta Cryst. (1971). B27, 392

The Crystal and Molecular Structure of a Sulphur-Containing Antibiotic, 'vD844', 5-Oxo-6- N -methylformylamino-4,5-dihydro-1,2-dithiolo[4,3-b] pyrrole

By Birthe Jensen
Chemical Laboratory C, The Royal Danish School of Pharmacy, Copenhagen, Denmark

(Received 27 February 1970)
The antibiotic 5 -oxo- 6 - N -methylformylamino- 4,5 -dihydro-1,2-dithiolo[4,3-b]pyrrole, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, crystallizes in the monoclinic space group $P 2_{1} / c$ with four molecules in a unit cell of dimensions $a=14 \cdot 22, b=3 \cdot 788, c=19 \cdot 06 \AA ; \beta=116 \cdot 4^{\circ}$. The unit cell also contains about 3 molecules of water. The structure was solved from two- and three-dimensional Patterson syntheses and refined by the fullmatrix least-squares method, producing a final R value of $0 \cdot 105$. It shows some disorder, caused partly by the water molecules and partly by the presence of two different conformations of the vD844 molecule in the crystal. The ring system is approximately planar and the side chain is twisted about 42° out of this plane, the angle being approximately the same in both of the conformations of the vD844 molecule. $\mathrm{N}-\mathrm{H}--\mathrm{O}$ hydrogen bonds of length $2 \cdot 83 \AA$ connect the vD844 molecules in pairs. The positions of the water molecules are not well defined; the molecular packing is very compact and leaves sufficient space for only about three of any four equivalent positions to be occupied. The average distance found between the oxygen atoms of two water molecules is $2 \cdot 34 \AA$.

Introduction

A compound with anti-bacterial activity, and called vD844, has been separated from the culture fluid of an
unidentified Streptomyces species isolated from a soil sample collected near Copenhagen. It is strongly active against Neisseria and certain other gram-negative organisms, but it is rather toxic. Chemical investiga-
tions of the compound have been made by von Daene, Godtfredsen, Tybring \& Schaumburg (1969) who propose the formula 5 -oxo- $6-\mathrm{N}$-methylformylamino-4,5-dihydro-1,2-dithiolo[4,3-b]pyrrole (I) for it.

(I)

This communication describes the unambiguous determination of the molecular structure of vD844 using single-crystal X-ray diffraction techniques. A preliminary communication on this investigation has been published (Jensen, 1969).

Experimental and crystal data

Crystals of vD844, which were kindly provided by Dr W. O. Godtfredsen, Leo Pharmaceutical Products, Ballerup, Denmark, grow slowly at the interface between ethyl acetate and water. They are yellow, monoclinic needles elongated in the \mathbf{b} direction; m.p. $181-182^{\circ} \mathrm{C}$. X-ray diffraction photographs of them indicate some structural disorder. Two types of reflexions are seen: the first is a class of sharp, normally strong reflexions which alone correspond to a structure with space group $P 2_{1} / c$ and unit-cell dimensions $a=$ $14 \cdot 22 \pm 0.03, b=3.788 \pm 0.004, c=19.06 \pm 0.04 \AA, \beta=$ $116 \cdot 4 \pm 0 \cdot 3^{\circ}$; between these a second class, consisting of weak, diffuse reflexions, is observed. The average intensity of these diffuse reflexions is about one half of the minimum observed intensity for the sharp reflexions. Consideration of these reflexions leads to the space group $C c$ or $C 2 / c$ and doubling of the a and b axes. However, for reasons discussed below the analysis was based on the sharp reflexions only, so that remarks in this paper will always refer to the space group $P 2_{1} / c$ and the smaller unit-cell. The density of $1.63 \pm 0.02 \mathrm{~g} . \mathrm{cm}^{-3}$ measured by flotation in a mixture of CCl_{4} and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ shows a great deviation from the density of $1.56 \mathrm{~g} . \mathrm{cm}^{-3}$ calculated for 4 molecules of vD844 having the structure proposed by von Daene, Godtfredsen, Tybring \& Schaumburg (1969) and indicates an additional content of approximately 50 a.m.u. per unit cell. That this is due to about 3 molecules of water of crystallization has been confirmed by elementary analysis and by the structure determination. The density calculated on this basis is $1.64 \mathrm{~g} . \mathrm{cm}^{-3}$.

According to Eisenman, Minieri, Abbey, Carlebois, Moncrieff-Yeates \& Rigler (1953), the antibiotic HA-9, which is apparently identical with vD844, forms small, probably orthorhombic, crystals from benzene. A few attempts to prepare anhydrous crystals, limited by the
small amount of compound available, were made, but without success.
X-ray diffraction photographs from several crystals were taken, and all show the same pattern, even those from specimens of vD844 recrystallized from ethanol. All the X-ray data used for intensity measurements were registered from a needle with the dimensions $0.14 \times 0.1 \times 0.55 \mathrm{~mm}$. Using $\mathrm{Cu} \mathrm{K} \alpha$ radiation and Weissenberg equi-inclination techniques, multiple-film exposures were taken of the layers $0 \leq k \leq 3$ and of the two weak, diffuse layers with $k=\frac{1}{2}$ ' and ' $\frac{3}{2}$ ' respectively. Precession photographs of $h k 0,0 k l$ and $1 k l$ were also taken with Mo $K \alpha$ radiation. The intensities of all the reflexions were estimated visually, corrected for geometrical factors, including corrections due to spot shape variations (Phillips, 1956) and scaled to produce a total of 965 sharp and 527 diffuse non-zero reflexions. Data measured from the precession photographs were used in the data scaling to correlate the Weissenberg-recorded observations but were not included in the final data set. The number of sharp reflexions observed corresponds to about 52% of that theoretically attainable with copper radiation. No corrections for extinction or absorption were applied (linear absorption coefficient, $\mu \mathrm{Cu} K \alpha=30 \cdot 6 \mathrm{~cm}^{-1}$).

Determination and refinement of the structure

Because of the very short b axis, the x and z parameters of most non-hydrogen atoms were easily deduced from the Patterson synthesis, $P(x z)$, using the minimum function (Buerger, 1959). The inversion peaks corresponding to the two sulphur atoms were found, and by combination of the two $M_{2}(x z)$ maps for these peaks an $M_{4}(x z)$ map was obtained from which the coordinates of the atoms of the greater part of the molecule could be postulated. An electron density projection, $\varrho(x z)$, phased on the contributions of these atoms to the structure factors, showed the whole molecule clearly. After a single cycle of R minimization (Bhuiya \& Stanley, 1963) using an ALGOL program written by Danielsen,* the $R(h 0 l)$ value was $0 \cdot 28$.
The y parameters were subsequently found from the three-dimensional Patterson synthesis, $P(x y z)$, calculated from the sharp reflexions.
The disorder in the structure had thus far been neglected. An electron density projection $\varrho(x z)$ calculated at this stage is shown in Fig. 1, and shows two features which can be interpreted to lead to the presence of the weak, diffuse reflexions observed. (1) Two peaks (indicated by arrows) are situated in positions which correspond to those expected for the oxygen atom in the formylamino group of the side chain in each of two orientations. Both appear with peak heights about one half of that expected for an oxygen peak. Thus the

[^0]vD844 molecules appear to be present in two conformations in the crystal and the electron density map shows a superposition of the two. (2) The peaks near $\left(\frac{1}{2}, \frac{1}{4}\right)$ correspond to the oxygen atoms of water molecules with only about 75% occupancy of the 4 equivalent positions in the unit cell.

As none of the distances from the water oxygen atom positions to the atoms in the side chains is
shorter than the sums of the respective van der Waals radii, a connection between the two kinds of disorder seemed improbable. In an attempt to determine the nature of the irregularities the following postulates were tested. (1) The ring system of the vD844 molecules can be completely described in the space group $P 2_{1} / c$; and the difference in conformation of the vD844 molecules is regular so that their packing alone corresponds

Fig. 1. Electron density projection on (010). The contour levels are on an arbitrary scale. Two peaks (indicated by arrows) are situated in positions corresponding to disordered formyl oxygen atoms, and indicate the presence of two conformations of the
vD844 molecules in the crystal.

Fig. 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$.
Table 1. Final atomic parameters

to $C c$ symmetry, and only the water molecules are really disordered and cause the weak reflexions to be diffuse. (2) The vD844 molecules occupying only one equivalent position may have different conformations and these may give rise to small displacements of the neighbouring molecules and thereby cause all of them to contribute to the disorder. (3) The ring systems have practically fixed positions and both the side chains and the water molecules contribute to the disorder.

Postulate (1) was rejected for the following reason. The asymmetric unit in space group $C c$ will contain 4 molecules of vD844 and 3 molecules of water, and the vD844 molecules should differ from each other only in the conformation of the side chain. Attempts were made to postulate an ordered structure in space group $C c$, but none of the possible combinations of vD844 molecules having different conformations produced the intensity distribution of the diffuse diffraction pattern; and all calculated Fourier syntheses showed peaks corresponding to a formyl oxygen atom in each of the two conformers in all the four vD844 molecules in the asymmetric unit. As stated later in this paper (see Discussion) an ordered distribution of the vD844 molecules of different conformation is not too likely.

If postulate (2) were true exceptional 'thermal vibrations' for all atoms in the structure would have been expected. But the anisotropic motion actually found is normal for the greater part of the vD844 molecule, and could not give rise to the observed disorder effects. (2) was therefore abandoned.

Postulate (3) was then accepted. The refinement of the structure was made assuming space group $P 2_{1} / c$, and only the sharp reflexions were included. Attempts to explain the intensity distribution of the weak diffuse zones have not been made.

The refinement was performed by the full-matrix least-squares method. Positional parameters for all atoms, including those corresponding to both possible side chain orientations and the postulated water oxygen atom, were refined in all cycles. Site occupancy factors for the disordered atoms were also refined. In the first three cycles individual atomic isotropic temperature factors were assumed, but these were extended to anisotropic parameters for the next four cycles. Finally four scale factor parameters, each corresponding to a layer of observed data, were varied. To avoid the possible occurrence of matrix singularities, some thermal parameters (but not the same parameters for all cycles) were held fixed. The data weighting scheme was that proposed by Hughes (1941), and no unobserved reflexions were included in the calculations. The scattering factors were taken from International Tables for X-ray Crystallography (1962). After the last cycle all shifts were less than one third of their corresponding estimated standard deviations. The final reliability index, R, is $0 \cdot 105$. Table 6 lists the observed structure amplitudes and the corresponding calculated structure factors from the final structural parameters. After the refinement a difference Fourier synthesis was
calculated, but it was not possible to establish the positions of the hydrogen atoms in the structure from this with any reasonable certainty.

Most of the calculations were performed on the IBM 7090 and 7094 computers at Northern Europe University Computing Center, Lyngby, Denmark, using the integrated program system X-Ray 63 from the University of Maryland (Stewart, 1964).

Description and discussion of the structure

The bond lengths and angles and their corresponding estimated standard deviations, calculated from the final atomic coordinates in Table 1, are given in Tables 2 and 3 and Fig. 2, and a list of interatomic distances describing the surroundings of the sulphur atoms, the formyl-oxygen atoms and the water oxygen atom is given in Table 4. The least-squares planes, A, B and C, through $\mathrm{N}(4), \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7)$ and $\mathrm{C}(8)$, through $\mathrm{C}(6), \mathrm{N}(10), \mathrm{C}\left(11^{\prime}\right), \mathrm{O}\left(12^{\prime}\right)$ and $\mathrm{C}\left(13^{\prime}\right)$ and through $\mathrm{C}(6), \mathrm{N}(10), \mathrm{C}\left(11^{\prime \prime}\right), \mathrm{O}\left(12^{\prime \prime}\right)$ and $\mathrm{C}\left(13^{\prime \prime}\right)$, respectively, were calculated. The parameters of these planes, the deviations of the atoms from them and the angles between them are given in Table 5.

Table 2. Bond lengths, with their e.s.d.'s $\left(\times 10^{3}\right)$ in parentheses
Distances between atoms probably not belonging to the same conformation of the vD844 molecule are marked with an asterisk.

Table 3. Bond angles, with their e.s.d.'s in parentheses
Angles including atoms probably belonging to different conformations of the vD844 molecules are marked with an asterisk.

$\mathrm{S}(1)-\mathrm{S}(2)-\mathrm{C}(3)$	$96 \cdot 2(0.5)^{\circ}$
$\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$116 \cdot 3(1 \cdot 0)$
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$117 \cdot 6(0.8)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{S}(1)$	$114.4(0.7)$
$\mathrm{C}(7)-\mathrm{S}(1)-\mathrm{S}(2)$	$95 \cdot 5(0 \cdot 4)$
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{N}(4)$	$134 \cdot 9(1 \cdot 1)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(4)$	$107 \cdot 5(0 \cdot 8)$
$\mathrm{C}(8)-\mathrm{N}(4)-\mathrm{C}(5)$	$110 \cdot 6(0 \cdot 8)$

Table 3 (cont.)

$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$107 \cdot 0(0 \cdot 7)$
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{O}(9)$	$125 \cdot 6(0 \cdot 9)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(9)$	$127 \cdot 1(1 \cdot 0)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}()$	$107.4(1 \cdot 0)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$107 \cdot 4(0 \cdot 8)$
$\mathrm{S}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$138 \cdot 2(0 \cdot 9)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(10)$	$128 \cdot 8(0 \cdot 9)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(10)$	$123 \cdot 9(0 \cdot 8)$
$\mathrm{C}(6)-\mathrm{N}(10)-\mathrm{C}\left(11^{\prime}\right)$	$12 \cdot 4(1 \cdot 2)$
$\mathrm{N}(10)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{O}\left(12^{\prime}\right)$	$129 \cdot 0(2 \cdot 5)$
$\mathrm{C}(6)-\mathrm{N}(10)-\mathrm{C}\left(13^{\prime}\right)$	$116 \cdot 5(1 \cdot 1)$
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{N}(10)-\mathrm{C}\left(13^{\prime}\right)$	$121 \cdot 5(1 \cdot 5)$
$\mathrm{C}(6)-\mathrm{N}(10)-\mathrm{C}\left(11^{\prime \prime}\right)$	$113 \cdot 6(2 \cdot 2)$
$\mathrm{C}(6)-\mathrm{N}(10)-\mathrm{C}\left(13^{\prime \prime}\right)$	$121 \cdot 5(1 \cdot 8)$
$\mathrm{N}(10)-\mathrm{C}\left(13^{\prime \prime}\right)-\mathrm{O}\left(12^{\prime \prime}\right)$	$118 \cdot 8(2 \cdot 6)$
$\mathrm{C}\left(11^{\prime \prime}\right)-\mathrm{N}(10)-\mathrm{C}\left(13^{\prime \prime}\right)$	$119 \cdot 9(2 \cdot 6)$
$\mathrm{N}(10)-\mathrm{C}\left(11^{\prime \prime}\right)-\mathrm{O}\left(12^{\prime}\right)$	$132 \cdot 0 *(4 \cdot 9)$
$\mathrm{N}(10)-\mathrm{C}\left(13^{\prime}\right)-\mathrm{O}\left(12^{\prime \prime}\right)$	$101 \cdot 1 *(1 \cdot 4)$
$\mathrm{C}\left(11^{\prime}\right)-\mathrm{N}(10)-\mathrm{C}\left(13^{\prime \prime}\right)$	$116 \cdot 0 *(2 \cdot 1)$
$\mathrm{C}\left(11^{\prime \prime}\right)-\mathrm{N}(10)-\mathrm{C}\left(13^{\prime}\right)$	$129 \cdot 7 *(2 \cdot 4)$

Table 4. Interatomic distances describing the surroundings of the sulphur atoms, the formyl oxygen atoms and the water oxygen atom
General equivalent positions of the molecules are:

$\mathrm{I}(x, y, \quad z)$	VI $\left(x, 2 \frac{1}{2}-y, \frac{1}{2}+z\right)$
$\operatorname{II}\left(-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$	VII $\left(x, 1 \frac{2}{2}-y, \frac{1}{2}+z\right)$
$\operatorname{III}(-x, 2-y, 1-z)$	VIII $(x, y+1, z)$
$\operatorname{IV}(-x, 1-y, 1-z)$	IX $\left(1-x, y+\frac{1}{2}, 1 \frac{1}{2}-z\right)$
V $(x, y-1, \quad z)$	XX $\left(1-x, y-\frac{1}{2}, 1 \frac{1}{2}-z\right)$

From atom	to atom	
$\mathrm{S}(1)$	S(2) II	$3.84 \AA$
S(1)	S(1) II	$3 \cdot 54$
S(2)	S(1) II	3.76
O(12') I	O(12") III	3.68
$\mathrm{O}\left(12^{\prime}\right) \mathrm{I}$	C(11) III	$3 \cdot 85$
$\mathrm{O}\left(12^{\prime}\right) \mathrm{I}$	C(11") III	3.74
$\mathrm{O}(12$) I	$\mathrm{O}\left(12^{\prime}\right)$ III	$4 \cdot 19$
$\mathrm{O}\left(12^{\prime}\right) \mathrm{I}$	$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{IV}$	$4 \cdot 38$

Fig. 3. Thermal vibrational ellipsoids drawn at the 50% significance level. $\mathrm{C}(11)$ and $\mathrm{C}(13)$ are shown as one atom each, not as the fractional atoms mentioned in the paper.

Table 4 (cont.)

From atom	to atom	
$\mathrm{O}\left(12{ }^{\prime}\right)$	C(11') IV	$3 \cdot 42$
$\mathrm{O}(12$) I	C(11") IV	$3 \cdot 49$
$\mathrm{O}\left(12{ }^{\prime}\right) \mathrm{I}$	$\mathrm{O}(12$) IV	$3 \cdot 44$
$\mathrm{O}(12$)	$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{V}$	$3 \cdot 98$
$\mathrm{O}(12$)	$\mathrm{N}(10) \mathrm{V}$	$3 \cdot 65$
$\mathrm{O}\left(12{ }^{\prime}\right) \mathrm{I}$	$\mathrm{C}\left(11^{\prime}\right) \mathrm{V}$	$3 \cdot 61$
$\mathrm{O}\left(12{ }^{\prime}\right) \mathrm{I}$	$\mathrm{C}\left(11^{\prime \prime}\right) \mathrm{V}$	$3 \cdot 36$
$\mathrm{O}\left(12{ }^{\prime}\right) \mathrm{I}$	S(1) I	$3 \cdot 15$
$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{I}$	S(2) VI	3.02
$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{I}$	$\mathrm{C}(3) \mathrm{VI}$	$3 \cdot 56$
$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{I}$	S(2) VII	$3 \cdot 51$
$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{I}$	C(3) VII	$3 \cdot 37$
$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{I}$	C(13') VIII	3.75
$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{I}$	C(13") VIII	4.01
$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{I}$	N(10) VIII	$3 \cdot 68$
$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{I}$	C(11) VIII	3.43
$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{I}$	C(11") VIII	$3 \cdot 79$
$\mathrm{O}(14) \mathrm{I}$	C(13') IX	3.33
$\mathrm{O}(14)$	C(13') IX	3.82
$\mathrm{O}(14)$	$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{IX}$	4.06
$\mathrm{O}(14)$	$\mathrm{O}(9)$ IX	2.69
$\mathrm{O}(14) \mathrm{I}$	$\mathrm{O}(14) \mathrm{IX}$	2.33
$\mathrm{O}(14) \mathrm{I}$	$\mathrm{C}\left(13^{\prime}\right) \mathrm{X}$	$3 \cdot 54$
O(14) I	$\mathrm{C}\left(13^{\prime \prime}\right) \mathrm{X}$	3.73
$\mathrm{O}(14) \mathrm{I}$	$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{X}$	4.02
$\mathrm{O}(14) \mathrm{I}$	$\mathrm{C}\left(13^{\prime}\right) \mathrm{I}$	$3 \cdot 52$
$\mathrm{O}(14) \mathrm{I}$	$\mathrm{C}\left(13^{\prime \prime}\right) \mathrm{I}$	3.92
$\mathrm{O}(14) \mathrm{I}$	$\mathrm{O}\left(12^{\prime \prime}\right) \mathrm{I}$	3.83

The deviations of all the ring atoms and of $\mathrm{N}(10)$ from plane A are small and not significant, and the bond lengths in the ring system are as expected for a
planar system with conjugated double bonds. The S-S distance of $2.07 \AA$ indicates definitely a single bond,

Table 5. Least-squares planes and the angles between them

The equations of the planes are in orthogonal \AA space (I parallel to \mathbf{a}; \mathbf{J} parallel to \mathbf{b} and \mathbf{K} parallel to \mathbf{c}^{*}) and the distances of the atoms from the least-squares planes are in \AA.
Distances to atoms defining the plane are asterisked.

$\begin{aligned} & A 0.26902 I+0.93571 J+0.22820 K-4.7401=0 \\ & B 0.20409 I-0.93268 J+0.29741 K+0.64812=0 \end{aligned}$			
\bigcirc plane A plane C plane B plane $7^{\circ}{ }^{\circ}$			
Atom	A	B	C
S(1)	0.028		
S(2)	0.002		
C(3)	-0.011		
$\mathrm{N}(4)$	-0.007*		
C(5)	$0.002 *$		
C(6)	0.004	-0.017^{*}	-0.032^{*}
C(7)	-0.008*		
C(8)	$0 \cdot 009$		
$\mathrm{O}(9)$	0.089		
$\mathrm{N}(10)$	0.008	0.042*	-0.138*
$\mathrm{C}\left(11^{\prime}\right)$		-0.036*	-0.30
$\mathrm{O}\left(12{ }^{\prime}\right)$		0.016*	-0.19
$\mathrm{C}\left(13^{\prime}\right)$		-0.005*	-0.27
C(11")		0.25	$0.005 *$
$\mathrm{O}\left(12^{\prime \prime}\right)$		$0 \cdot 41$	0.022^{*}
$\mathrm{C}\left(13^{\prime \prime}\right)$		$0 \cdot 32$	0.144*

Fig. 4. The structure viewed along the b axis. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown together with the surroundings of $\mathrm{O}\left(12^{\prime}\right)$, $\mathrm{O}\left(12^{\prime \prime}\right)$ and of the water of crystallization $[\mathrm{O}(14)]$. From the molecule (x, y, z) broken lines go to the molecules with the general positions indicated, and dotted lines are drawn to the molecules below. Distances to $\mathrm{C}\left(11^{\prime \prime}\right)$ and $\mathrm{C}\left(13^{\prime \prime}\right)$ are given in parentheses.

Fig. 5. The structure viewed along the a^{*} axis. All molecules shown have the same x coordinates. The distances to $\mathrm{O}\left(12^{\prime}\right)$ and $\mathrm{O}\left(12^{\prime \prime}\right)$ are indicated. Distances to $\mathrm{C}(11)^{\prime \prime}$ and $\mathrm{C}\left(13^{\prime \prime}\right)$ are given in parentheses.
while both of the S-C bond lengths, 1.73 and $1.74 \AA$, are significantly shorter that the accepted value for a single bond, $1.82 \AA$ (Sutton, 1965), and may be compared with the S-C bonds in thiophen, $1.718 \AA$ (Bak, Christensen, Rastrup-Andersen \& Tannenbaum, 1956) and similar compounds. The other bond lengths also show that the π-electrons of the double bonds must be delocalized. The length of $\mathrm{N}(4)-\mathrm{C}(8)$ is $1.33 \AA$, a value intermediate between the $\mathrm{C}-\mathrm{N}$ bond lengths in pyrrole, $1.383 \AA$ (Bak, Christensen, Hansen \& Rastrup-Andersen, 1956) and in succinimide, $1 \cdot 27 \AA$ (Mason, 1956). Finally, the distance $\mathrm{N}(4)-\mathrm{C}(5), 1.37 \AA$, is similar to the value $1.333 \AA$ given for $\mathrm{N}-\mathrm{C}$ bonds in amides, (Sutton, 1965).

The angle between the ring plane and the plane of the side chain is about 42° in both of the two molecular conformations. Brown (1966) found a value of 17.6° for the corresponding angle in acetanilide, even though the C (ring)- N -(side chain) bond length of $1.413 \AA$ is of similar length to that of $1.41 \AA$ for the equivalent bond in this molecule.

In one of the two molecular conformations $\mathrm{C}(11)$ is the carbonyl carbon atom and $\mathrm{C}(13)$ is the methyl carbon atom; in the other the functions of $\mathrm{C}(11)$ and $\mathrm{C}(13)$ are interchanged. The same two conformations of the vD844 molecules are found also in DMSO-solution (von Daene, Godtfredsen, Tybring \& Schaumburg, 1969). As the $\mathrm{N}-\mathrm{C}(=\mathrm{O})$ bond length is almost certainly shorter than the $\mathrm{N}-\mathrm{C}\left(\mathrm{H}_{3}\right)$ bond length it is unlikely that the individual atoms of the pairs of contributors forming the $\mathrm{C}(11)$ and $\mathrm{C}(13)$ Fourier peaks respectively should be at exactly the same positions. Therefore two atoms were postulated each for $\mathbf{C}(11)$ and $\mathbf{C}(13)$. From the final positions of these atoms it seems likely that $\mathrm{N}(10), \mathrm{C}\left(11^{\prime}\right), \mathrm{O}\left(12^{\prime}\right)$ and $\mathrm{C}\left(13^{\prime}\right)$ constitute the side chain of one of the molecular conformations of vD844 and $\mathrm{N}(10), \mathrm{C}\left(11^{\prime \prime}\right), \mathrm{O}\left(12^{\prime \prime}\right)$ and $\mathrm{C}\left(13^{\prime \prime}\right)$ form the side chain of the other.

Large 'thermal' vibrations are found for $\mathrm{O}\left(12^{\prime}\right)$ and $\mathrm{O}\left(12^{\prime \prime}\right)$. These could express random variation in the positions of the oxygen atoms which may be induced by the neighbouring molecules having different conformations. Also, large contributions to the 'thermal' parameters may result from the neglect of the three methyl hydrogen atoms, which in one of the molecular conformations are situated close to the positions of the formyl oxygen atoms of molecules in the second conformation. The site occupancies found are 0.64 (e.s.d. 0.04) for both $\mathrm{O}\left(12^{\prime}\right)$ and $\mathrm{O}\left(12^{\prime \prime}\right)$. The differences from the expected values of 0.5 for each are also probably due to the influence of these methyl hydrogen atoms.

Fig. 6. The hydrogen bond system around the screw axis $\left(\frac{1}{2}, y, \frac{1}{4}\right)$. The system is disordered since only three of every four of the water positions $[O(14)]$ are occupied; the accuracies of the distances and angles shown are low due to variations in the positions of the water molecules.

Table 6．Observed and calculated structure factors for vD844
The column headings are the index $l,\left|F_{o}\right|$ and $\left|F_{c}\right|$ ．
 づっだった。

Table 6 (cont.)

 | 123 | 101 |
| :---: | :---: | :---: |
| 101 | 90 |
| 165 | 180 |
| 321 | 337 |
| 140 | 124 |
| 148 | 120 |
| 175 | 163 |
| 77 | 69 |
| 123 | 126 |
| 77 | 85 |
| 159 | 142 |
| 96 | 131 |
| 5, | |
| 5,1 | |
| 65 | 79 |
| 87 | 78 |
| 154 | 158 |
| 177 | 199 |
| 127 | 107 |
| 96 | 93 |
| 141 | 147 |
| 77 | 75 |
| 105 | 115 |
| 304 | 328 |
| 190 | 176 |
| 341 | 360 |

4
4
4
2
2
2
4
4
7
7
4
4

The position of $\mathrm{O}(14)$, the oxygen atom in the water molecule, is not well defined. Its 'vibrational' parameters shown diagrammatically in Fig. 3, are extremely large. The multiplicity found for $\mathrm{O}(14)$ is only 0.80 , possibly because the close packing around the water molecules leaves sufficient space for only about three of any four equivalent positions to be occupied. One water molecule may cause those immediately above and below it to move a little upwards/ sideways and downwards/sideways respectively, and these displacements may not leave enough space for the next molecules in the series to occupy their expected 'ordered' positions. Eventually, the displacements become such that one 'ordered' position is omitted.

The water molecules are involved in a disordered hydrogen bond system. Each water molecule can act as donor for two hydrogen bonds, one to a carbonyl oxygen atom, $\mathrm{O}(9)$, and one to a neighbouring water molecule; and it accepts a hydrogen bond from another water molecule, see Fig. 6. The $\mathrm{O}(9)-\cdots \mathrm{O}(14)$ distance is about $2.69 \AA$ and it is nearly unaffected by the possible variable position of $\mathrm{O}(14)$ since the direction of the greatest 'vibration' for this atom is roughly perpendicular to the $\mathrm{O}(9)-\mathrm{O}(14)$ direction. The average distance between the oxygen atoms in neighbouring water molecules is $2.34 \AA$. The length of the centred hydrogen bond in potassium hydrogen chloromaleate is $2.40 \AA$ (Ellison \& Levy, 1965), so this length is much too short, even for an $\mathrm{O}-\mathrm{H}-\mathrm{-}$ - O hydrogen bond. The vD844 molecules themselves are connected in pairs by hydrogen bonds, $N(4)---O(9)$, of length $2.83 \AA$. The deviation of $\mathrm{O}(9)$ from the ring plane A is $0.09 \AA$ in the direction of the neighbouring $\mathrm{N}(4)$ atom.

The surroundings of $\mathrm{O}\left(12^{\prime}\right)$ and $\mathrm{O}\left(12^{\prime \prime}\right)$ are illustrated in Figs. 4 and 5. Since no really close contacts to side chains in other molecules exist, order in the distribution of the two molecular conformations is probably very unlikely, even around a single row of symmetry centres, e.g. $\left(0, n \times \frac{1}{2}, \frac{1}{2}\right)$; and, further, it is even more unlikely that some possible order could be translated to the next, equivalent row of symmetry centres, e.g. ($1, n \times \frac{1}{2}, \frac{1}{2}$).

The disulfide groups are arranged closely around the screw axes. S---S contacts between disulfide groups
have been found in several crystal structures, (Fridrichsons \& Mathieson, 1967), and they may exercise a strong influence on the molecular packing. Further close sulphur contacts are an intramolecular distance of $3.15 \AA$ between $S(1)$ and $O\left(12^{\prime}\right)$ and an intermolecular distance of $3.02 \AA$ between $\mathrm{S}(2)$ and $\mathrm{O}\left(12^{\prime \prime}\right)$. The sum of the van der Waals radii is $3.25 \AA[=1.85+1.40$, Pauling (1960)], so these distances may indicate weak oxygen-sulphur attractions.

The author thanks Professor Bodil Jerslev for her kind interest in this work and Dr K. Watson, Chemical Laboratory IV, H. C. Ørsted Institute, Copenhagen, for helpful discussions and suggestions.

References

Bak, B., Christensen, D., Hansen, L. \& Rastrup-Andersen, J. (1956). J. Chem. Phys. 24, 720.
Bak, B., Christensen, D., Rastrup-Andersen, J. \& Tannenbaum, E. (1956). J. Chem. Phys. 25, 892.
Bhuya, A. K. \& Stanley, E. (1963). Acta Cryst. 16, 981. Brown, C. J. (1966). Acta Cryst. 21, 442.
Buerger, M. J. (1959). Vector Space. New York: JohnWiley. Daene, W. von, Godtrredsen, W. O., Tybring, L. \& Schaumburg, K. (1969). J. Antibiotics, 22, 233.
Eisenman, W., Minieri, P. P., Abbey, A., Charlebois, J., Moncrieff-Yeates, M. \& Rigler, N. E. (1953). Antibiot. Chemother. 3, 385.
Ellison, R. D. \& Levy, H. A. (1965). Acta Cryst. 19, 260. Fridrichsons, J. \& Mathieson, A. McL. (1967). Acta Cryst. 23, 439.
Jensen, B. (1969). J. Antibiotics, 22, 231.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
International Tables for X-ray Crystallography (1962). Vol. III, Table 3.3.1 A. Birmingham: Kynoch Press.
Mammi, M., Bardi, R., Traverso, G. \& Bezzi, S. (1961). Nature, Lond. 192, 1282.
Mason, R. (1956). Acta Cryst. 9, 405.
Pauling, L. (1960). The Nature of the Chemical Bond. 3rd ed. Ithaca: Cornell Univ. Press.
Phillips, D. C. (1956). Acta Cryst. 9, 819.
Stewart, J. M. (1964). Technical Report Tr 64-6, NsG-398. Computer Science Center of the Univ. of Maryland, College Park.
Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions. Supplement 1956-59. London: The Chemical Society.

[^0]: * J. Danielsen. D 45, Stepwise Minimization of the R value. Department of Inorganic Chemistry, University of Århus, Denmark.

